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Two efficient methods for time-dependent fatigue reliability analysis are proposed in this paper based on a random
process representation of material fatigue properties and a nonlinear damage accumulation rule. The first method is
developed by matching the first two central moments of the accumulated damage to a well-known probability
distribution, thus facilitating a direct analytical solution of the time-dependent fatigue reliability. The second method
uses the first-order reliability method to calculate the reliability index based on a time-dependent limit state function.
These two methods represent different tradeoffs between accuracy and computational efficiency. The proposed
methods include the covariance structure of the stochastic damage accumulation process under variable amplitude
loading. A wide range of fatigue data available in the literature is used to validate the proposed methods, covering
several different types of metallic and composite materials under different variable amplitude loading.

L

HE fatigue process of mechanical components under service
loading is stochastic in nature. The prediction of time-
dependent fatigue reliability is critical for the design and
maintenance planning of many structural components. Despite
extensive progress made in the past decades, life prediction and
reliability evaluation is still a challenging problem. Two types of
probability distributions are often used to characterize the
randomness of the fatigue damage accumulation and fatigue life.
One is the probabilistic life distribution, that is, the distribution of
service time (life) to exceed a critical damage value. The other is the
probabilistic damage distribution, that is, the distribution of the
amount of damage at any service time. Time-dependent fatigue
reliability refers to the latter one (i.e., the probability of damage being
less than a critical value at time #). Both simulation-based and
simplified approximation methods can be used to estimate the time-
dependent reliability. Liu and Mahadevan [1] proposed a
Monte Carlo simulation methodology to calculate the probabilistic
fatigue life distribution and validated it for various metallic materials.
The objective of this study is to develop a simple approximation
methodology to calculate the time-dependent fatigue reliability.
The following problems need to be carefully solved to accurately
predict the time-dependent fatigue reliability: uncertainty quantifi-
cation of material properties, uncertainty quantification of applied
loading, and an appropriate damage accumulation rule. Different
approaches have been proposed to handle these problems. For
uncertainty quantification of material properties, two main
approaches exist in the literature to represent experimental data
under constant amplitude loading. One approach assumes that
fatigue lives at different stress levels are independent random
variables [2—6]. The other approach assumes that fatigue lives at
different stress levels are fully dependent random variables [7—13].
Liu and Mahadevan [1] proposed a stochastic S-N curve
representation technique to include the actual correlation of fatigue
lives across different stress levels. The two approaches using
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independent or fully dependent assumptions are two special cases of
the developed methodology [1].

The damage accumulation rule is another important component in
time-dependent fatigue reliability analysis. The linear damage
accumulation rule, also known as Miner’s rule, is commonly used
because of its simplicity. The major deficiency of the linear damage
accumulation rule is that it cannot consider the load dependence
effect. Nonlinear damage accumulation rules, such as the damage
curve approach [14] and the double linear curve approach [15], can
consider the load dependence effect but require cycle-by-cycle
calculation, which significantly increases the computational cost
especially for probabilistic analysis. Liu and Mahadevan [1]
proposed a modification of the linear damage accumulation rule to
overcome its deficiency while maintaining the simplicity of
computational effort. This modified damage accumulation rule is
used in this study.

This paper develops two approximate methods to calculate fatigue
reliability as a function of time 7. The first method matches the first
two central moments of the accumulated damage to a well-known
distribution facilitating quick analytical calculation of the time-
dependent reliability. The second method does not assume the
distribution of the accumulated damage and uses the first-order
reliability method (FORM) to calculate the reliability index of a time-
dependent limit state function. Both methods are initially developed
for stationary loading and then extended for nonstationary loading.
Following this, the prediction results of the two methods are
compared with direct Monte Carlo simulation and found to be very
efficient and accurate. Several sets of experimental data under
variable amplitude loading are used to validate the proposed
methods.

II. Uncertainty Quantification and Damage

Accumulation Modeling
A. Uncertainty Quantification of External Loading

Two approaches are commonly used to describe the scatter in the
random applied loading. One is in the frequency domain and uses
power spectral density methods. The other is in the time domain and
uses cycle counting techniques. The major advantages of the
frequency domain approach are that it is more efficient and can obtain
an analytical solution under some assumptions of the applied loading
process, such as the Gaussian process, stationary, and narrowbanded.
This of course limits the applicability of the frequency domain
approach [16,17]. Also, most frequency domain analyses assume a
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linear fatigue damage accumulation rule [18-20], due to its
simplicity.

The time domain approach is used in this paper. Among many
different cycle counting techniques, rain-flow counting is
predominantly used and is adopted in the proposed methodology.
A detailed description of the rain-flow counting method can be found
in [21]. A schematic explanation is shown in Fig. 1 for two different
loading histories.

B. Uncertainty Quantification of Material Properties

The prediction of time-dependent fatigue reliability requires
uncertainty quantification of the S—N curve from constant amplitude
loading experiments. Liu and Mahadevan [1] proposed a stochastic
S—N curve approach to include the autocorrelation between fatigue
lives at different stress levels. The fatigue lives N under different
constant amplitude tests are treated as random fields/processes with
respect to different stress levels s and are assumed to follow the
lognormal distribution. The lognormal assumption makes log(N(s))
a Gaussian process with mean value process of E[log(N(s))] and
standard deviation of a[log(N(s))], where E[log(N(s))] is the mean
S—N curve obtained by regression analysis. It has been shown that
the variance is not a constant but a function of stress level s [10]. The
quantity o[log(N(s))] represents the scatter in the data and can be
obtained by classical statistical analysis. Based on the above
assumption, the process

log(N(s)) — E[log(N(s))]
ollog(N(s))]
is a Gaussian process with zero mean and unit variance.

An exponential decay function is proposed for the covariance
function C(s, s,) of Z(s) as

Z(s) = M

C(sy, 5,) = e M=l 2

where 1 is a measure of the correlation distance of Z(s) and depends
on the material.

Using the Karhunen—Loeve expansion method [22], the fatigue
life can be expressed as

log(N(s)) = oflog(N ()] Y v/A; &) f:(s) + Ellog(N(s)] 3)
i=1

where \/k_, and f;(x) are the ith eigenvalues and eigenfunctions of
the covariance function C(sy,s,). &(6) is a set of independent
standard Gaussian random variables.

A detailed explanation and derivation of the stochastic S—N curve
method can be found in [1]. The major advantage of this method is
that it includes the correlation between different stress levels. Most
available methods for fatigue reliability analysis assume that the
fatigue lives at different stress levels are either uncorrelated
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Fig. 1 Schematic illustration of cycle distribution using rain-flow
counting.

[C(s;, s5) = 0] random variables or fully correlated [C(s,, 5,) = 1]
variables. These two approaches are named statistical S—N curve
approach and quantile S—N curve approach, respectively, in this
discussion. A schematic comparison of the various methods for
representing the S—N curves is plotted in Fig. 2.

In classical S—N fatigue experiments, the specimen is tested until
failure or run out at a specified stress level and cannot be tested at the
other stress levels. Because of the nonrepeatable nature of fatigue
tests, the covariance function cannot be easily observed based on
constant amplitude experimental data, which is one possible reason
why it has been ignored in the past. However, its effects can be
observed under variable amplitude loading. The variation of fatigue
lives under variable amplitude loading depends on the variation of
fatigue lives at each constant amplitude loading and also their
correlations. It has been shown that [1] the two assumptions of
covariance (i.e., zero and unity) give upper and lower bounds in the
variance prediction under variable amplitude loading. Considering
covariance effect leads to a more accurate fatigue life prediction.

C. Damage Accumulation Rule

Liu and Mahadevan [1] proposed the following nonlinear damage
accumulation rule based on a modification of Miner’s rule. A general
form for multiblock loading can be expressed as

k —
;:1;’\;_',—‘#

4
V=25 (A;/w»'+ [y

where n; is the number of applied loading cycles corresponding to the
ith load level, and N, is the number of cycles to failure at the ith load
level from constant amplitude experiments. A; is a material
dependent coefficient and w; is the cycle distribution at the ith load
level from the rain-flow counting results. 1 is a critical damage value,
which defines the failure of the material. In Miner’s rule, ¥ =1
independent of the applied loading. In Eq. (4), ¥ depends on the
material (A;) and the applied loading (w;). The detailed derivation of
the nonlinear damage accumulation rule can be found in [1].
For continuous spectrum loading, Eq. (4) is expressed as

n(s) —
.f/v(s) ds=vy

®)
— 1
V= [ aorrerae

ds

where the cycle distribution w; (probability description for block
loading) becomes the probability density function (PDF) f(s) of the
applied continuous random loading (see Fig. 1).
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Fig. 2 Schematic comparisons of different approaches in representing
the fatigue S—-N curve.
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When using Eq. (4) [or Eq. (§)] for fatigue life prediction, the
critical damage value v is first calculated. For repeated multiblock
loading, the cycle distribution of the different stress levels at failure
can be approximated using the cycle distribution value in a single
block. For high-cycle fatigue, this is a reasonable approximation.
Then the fatigue life prediction is performed in the same way as the
classical procedure using the linear damage rule.

III. Proposed Methods for Time-Dependent
Reliability Analysis

Using the uncertainty quantification techniques and damage
accumulation rule described in the last section, the reliability can be
calculated by numerical simulations, such as the Monte Carlo
method. Although the Monte Carlo simulation is powerful in solving
the reliability problem, the computational effort prohibits its
application. This section proposes two accurate and simple time-
dependent reliability calculation methods considering the stochastic
damage accumulation. The analysis methods are based on a random
process representation of the material S—N curve (Sec. IL.B) in which
the correlation parameter is taken into account. The formulation of
the proposed methods is shown next.

A. Fatigue Reliability Under Stationary Loading

First, consider a material under stationary variable amplitude
loading. The material S—N curve N(s) is described using Eq. (3) as a
random process whose covariance function is expressed by Eq. (2).
The fatigue damage caused in a single cycle at the stress level s can be
expressed as a fraction of the total number of cycles to failure

D(s) =ﬁ ©)

{},LDT = E(T [§° f(s)D(s)ds) =T [¢° f(s)itps ds
012)T = COV(TfoOO f(s)D(s) ds) = T? fooo fooo f(sl)f(SZ)OD(sl)UD(sz)e_MSl_Sz‘ ds, ds,

damage at time 7 considering all the stress levels is the summation of
damage at each stress level:

Dy =3 D=3 (0= 2 mODAS) =T 3 fi0Di)

10)

For continuous stationary spectrum loading, Eq. (10) is expressed
as

_fenls) [ [
DT—L N(S)dS_L n(s)D(s)ds_TA F()D(s)ds (11)

Equation (11) [or Eq. (10)] is the probabilistic damage growth
function of the material under cyclic fatigue loading. It is shown that
the damage of the material depends on material properties D(s),
applied loading f(s), and time 7. The right side of Eq. (11) is an
integral of a random process. At a fixed time instant, it becomes a
random variable, which is the damage at time 7. Under arbitrary
external loading, the integral of the random process is not amenable
to an analytical solution. Thus, numerical approximation methods
are required to calculate the time-dependent reliability.

B. Method 1: Moments Matching Approach

Although the analytical solution of Eq. (11) is not possible, the first
two central moments of the fatigue damage can be obtained. For
continuous loading, the mean and variance of fatigue damage can be
expressed as

(12)

For discrete loading, the mean and variance of damage can be expressed as

{MDT =T %2, fs) s

0%)»,- =T, fz(si)azz)(s,») +23%,

Equations (3) and (6) show that the damage in a single cycle can
also be expressed as a random process when considering multiple
stress levels. The covariance function C(s,, s,) of D(s) is assumed to
be an exponential decay function as

C(sy,80) = UD(SI)UD(sz)e_MS'_SZl (7

where o, is the standard deviation of D(s) at the stress level s. A isa
measure of the correlation distance of D(s) and depends on the
material.

At any arbitrary time 7, the accumulated damage Dy ; at the ith
stress level s can be expressed as

_ n;(s) _
Dy, = Ni(s) = n;(s)D;(S) 3)

Under the stationary assumption, the number of applied loading
cycles n;(s) corresponding to the ith load level can be expressed as

ni(s) =Tfi(s) 9

where f;(s) is the probability density at the ith load level obtained
from the rain-flow counting results. Combining Eqgs. (8) and (9) and
the damage accumulation rule described in the last section, the total

it .f(si)f(s_j)gD(s,)oD(sj)67

)»|s,7x,\] (13)

where (p(,) and o, in Egs. (12) and (13) are the mean and standard
deviation of damage in a single cycle at stress level s, which are
obtained from constant amplitude loading tests.

To calculate the time-dependent fatigue reliability, we need to
assume the probability distribution of the fatigue damage D because
only the first two central moments are available. Equations (10) and
(11) can be treated as a summation of a set of random variables. It is
well known that a summation of Gaussian random variables is a
Gaussian random variable. However, the distribution of the
summation of non-Gaussian random variables is usually unknown.
Studies for some special cases of summation of non-Gaussian
random variables have been reported. Fenton [23] proposed a
method to approximate the summation of a set of correlated
lognormal random variables as a single lognormal random variable.
The method matches the mean and variance of the lognormal sum to
the target random variable. It has been shown that this method is very
accurate at the tail region, which is usually of the most interest for the
reliability analysis. A recent study by Filho and Yacoub [24] showed
that the sum of independent identically distributed Weibull variables
can also be expressed by a Weibull distribution. The lognormal and
Weibull probability distribution functions have been commonly used
in the literature to fit the fatigue damage from the constant amplitude
loading tests. From the previous discussion, it is shown that the
summation of independent and correlated lognormal variables can be
approximated by a single lognormal variable using the moment
matching method. The summation of independent Weibull variables
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can be approximated by a single Weibul variable too. The
distribution type of the summation of correlated Weibull variables is
not available and needs further theoretical study. In the proposed
study, we assume that the summation of independent and correlated
Weibull variables can be approximated by a single Weibull variable
using the moment matching method. We compared this assumption
with direct Monte Carlo simulation and found that this assumption
can give satisfactory prediction results and may lead to a very small
error under certain conditions, as shown in the numerical example in
this section.

Once the distribution type of Dy is known or assumed, the
reliability can be directly calculated. For example, if Dy follows the
lognormal distribution, (n (D7) follows the normal distribution with
the mean and variance determined by

in, =2 a(n,) o (1h, + 03, )

(14)
G, = =2 lalpi,) + o (ith, +03,)

The limit state function is defined as shown in Eq. (5). The failure
probability P is the damage exceedance probability, that is,

P, :p(&z ]) = @(M)
v GDT

Following the lognormal assumption of the fatigue damage, the
time-dependent reliability can be expressed as
A, — ﬂr(xﬁ))

reliability =1—-P,=1— @( —
Op,

5)

16)

where & is the cumulative density function of the standard Gaussian
variable. (i, and 6, have been determined by Eqs. (13) and (14). ¢
is the critical damage value determined by Eq. (5). Because the
variable T is explicitly included in the mean and variance of the
fatigue damage, the reliability calculated by Eq. (16) is time
dependent. A similar procedure can be followed to calculate the
reliability for Weibull distribution.

A numerical example is calculated and compared with direct
Monte Carlo simulation to show the accuracy of this moments
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matching approach. Consider a two-block variable amplitude
loading (S1 = 666 MPa and S2 = 478 MPa). The means of single
cycle damage at the two stress levels are mean(D(S1)) = 1.89E —
05 and mean(D(S2)) =2.44E — 06 using constant amplitude
loading for each individual stress level. The standard deviations of
single cycle damage at the two stress levels are Std(D(S1)) =
3.16E — 06 and Std(D(S2)) =5.72E —07. The Monte Carlo
simulation uses 10° samples at each time instant and is assumed to be
the exact solution. Different factors will affect the moments matching
approach: distribution type from constant amplitude test, cycle
fraction at each stress level, and the correlation coefficient between
single cycle damage at the two stress levels. The cycle fraction effects
are compared in Fig. 3 for four different cycle fractions of S1 with the
correlation coefficient fixed at zero. The correlation effects are
compared in Fig. 4 for four different correlation coefficients with the
cycle fraction fixed at 0.5. The results of both lognormal and Weibull
approximation are plotted and compared together. It is shown that the
approximation for the lognormal distribution is very accurate. For
Weibull distribution, the results are also very good but may lead to a
very small error (see Fig. 3a). Overall, the moments matching
method gives very good approximation.

C. Method 2: FORM Approach

The proposed moments matching method needs to assume the
type of probability distribution of the accumulated fatigue damage.
To calculate the time-dependent reliability without assuming the
fatigue damage distribution, another approximation method is
proposed based on the FORM. The limit state function g() for the
fatigue problem can be expressed based on Eqgs. (5) and (10) as

g =V—Dr=y—TY fi(s)D(s) a7
i=1

where D, (s), D,(s),...,D;(s) are a set of correlated random
variables which represent the single cycle damage at different stress
levels. The surface g() =0, referred to as the limit state, is the
boundary between safe and unsafe regions. The failure occurs when
g() < 0. Therefore, the probability of failure P/ is defined through a
multidimensional integral
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Fig. 3 Effects of cycle distribution using the moments matching approach. Cycle distribution at the first stress level: a) 0.2, b) 0.4, ¢) 0.6, and d) 0.8.
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Fig. 4 Effects of correlation using the moments matching approach. Correlation coefficient between the two stress levels: a) 0.0, b) 0.4, ¢) 0.6, and d) 1.0.
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g()<
18)

where f,(D,(s), D,(s),...,D;(s)) is the joint probability density
function for the basic random variables D, (s), D,(s), ..., D;(s) and
the integral is performed over the failure region, that is, g() < 0.

In general, the multidimensional integral is difficult to evaluate.
Various analytical methods have been developed to estimate the
value of the integral in Eq. (18). The FORM approach transforms all
the random variables to an uncorrelated standard normal space, finds
the minimum distance from the limit state to the origin, and estimates
the failure probability based on the minimum distance. The
minimum distance point on the limit state is also called the most
probable point (MPP). The first-order failure probability estimate is
computed as

Py =o(—p) 19)
where f, referred to as the reliability index, is the minimum distance
from the origin to the MPP, and ® is the cumulative distribution
function of a standard normal variable. Various techniques can be
used to find the MPP. This study uses the recursive formula proposed
by Rackwitz and Fiessler [25] to search for the MPP. The FORM
method is well established and details can be found in textbooks
(e.g., Haldar and Mahadevan [26]).

The limit state function in Eq. (17) includes the variable T and thus
is time dependent. At each time instant, the failure probability can be
computed using Eq. (19). The same numerical example used in
method 1 is also used here to verify the FORM approach. Cycle
fraction effects and correlation effects are shown in Figs. 5 and 6,
respectively. It is observed that the FORM approach generally gives
a very good prediction in all numerical examples for both lognormal
and Weibull distributions.

D. Comparison Between Methods 1 and 2

The moments matching method (method 1) assumes the
probability distribution of the accumulated fatigue damage Dy under

variable amplitude loading and directly calculates the fatigue
reliability. The use of this assumption makes the calculation very
efficient, which is the major advantage of nethod 1. The disadvantage
is also introduced by this assumption. The damage quantity used in
fatigue analysis is empirical and is hard to verify by experimental
data. As shown in the numerical example, this assumption can lead to
some error in the final predictions, although the error appears to not
be significant for the example considered.

The FORM method (method 2) does not assume the probability
distribution of the accumulated fatigue damage D, under variable
amplitude loading. It only uses the statistics of the basic variables and
calculates the joint failure probability. The advantage of the FORM
approach is that it is more general and has fewer assumptions. Thus it
can accommodate other types of distributions. The computational
expense of the FORM approach increases compared to the moments
matching approach as the number of random variables increases. The
reason is that the FORM computation is iterative. For numerical
fatigue reliability calculation under the continuous loading spectra,
the external loading can be divided into many small segments, which
results in many random variables. Under this condition, itis expected
that the FORM approach will not be as efficient as the moments
matching approach.

A numerical example is considered later to verify the previous
statement. The material properties are the same as the one used in the
experimental verification for nickel alloy (see Sec. IV). The cycle
distribution of the external loading is assumed to follow the Weibull
distribution with a mean value of 600 MPa and a standard deviation
of 30 MPa. In the numerical calculation, the continuous cycle
distribution is divided into 30 equal segments. The cycle distribution
is plotted in Fig. 7a. The prediction results using the moments
matching approach, the FORM approach, and the direct Monte Carlo
simulation approach are plotted together in Fig. 7b. The results of all
three methods are in very close agreement. The computational time
for the moments matching approach, FORM approach, and direct
Monte Carlo simulation approach are 0.3 s, 1.4 s, and 425 s,
respectively.

E. Fatigue Reliability Under Nonstationary Loading

The previous discussion is only applicable to stationary loading
because it only considers the cycle distribution of the applied
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Fig. 5 Effects of cycle distribution using FORM. Cycle distribution at the first stress level: a) 0.2, b) 0.4, ¢) 0.6, and d) 0.8.

loading. Estimation of fatigue damage accumulation under
nonstationary loading is complicated compared to that under
stationary loading. For nonstationary applied loading, the cycle

distribution changes corresponding to time 7'. Thus, Eq. (9) is not
valid for nonstationary loading. A general expression of the number
of applied loading cycles n;(s) corresponding to the ith load level can

be expressed as

Reliability

a)

Reliability

c)

ni(s) =Tfi(s. T) (20)

If the nonstationary description of the applied loading [i.e.,
f(s,T)] is known, then the first two central moments of the fatigue
damage D can be calculated. For continuous loading, the mean

value and variance of the fatigue damage can be expressed as
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Fig. 6 Effects of correlation using FORM. Correlation coefficient between the two stress levels: a) 0.0, b) 0.4, ¢) 0.6, and d) 1.0.
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{Mu, =E(T [§° f(5.T)D(s)ds) =T [5° f (s, T)ips ds
05, = COV(T [5° f(s,T)D(s)ds) = T? [5° [° f (51, T)f (52, T)Op(s Opisye 172 ds; ds,

@n

For discrete loading, the mean value and variance of D can be expressed as

{ Hp, = Ty 2, fsi T)/’LD(s;)
U%)T =T 22, £ (si, T)Ulz)(s,) +23%,

For example, two-step loading is commonly used for variable
loading tests under laboratory conditions. The material is first
precycled under stress level S, for T, cycles. Then the material is
cycled till failure at another stress level S,. This type of loading is
nonstationary as the mean and variance of the applied loading vary
with time. The cycle distribution function f (s, T) can be expressed
for the two-step loading as

ren o 125
f(s.1) = L .o (23)
T>T, Y/, "¢
a T—TT“ S:Sh

For the moments matching approach, the first two central
moments of the fatigue damage Dy can be expressed as

o Msi—s: (22)
S2im1 S0, 1) f (55, T)Op(s s € Msi=sil]

IV. Experimental Validation

In this section, the prediction results using the proposed methods
are compared with experimental data available in the literature. The
objective is to examine the applicability of the model to different
materials and different loading. The collected experimental data
include a wide range of metallic and composite materials under step
and multiblock loading. Another guideline in collecting data is that
the experimental data should have enough data points both in
constant amplitude tests and variable amplitude tests, so that reliable
statistical analysis and comparisons can be performed.

A. Experiment Description and Material Fatigue Properties

A brief summary of the collected experimental data is shown in
Table 1, which includes material name, reference, variable loading

m _{ T//“D(sm) r=T1,

br Ta/*‘LD(s,,) + (T - th)l‘LD(sh) T> Tu 24)

Tzaﬁ,(Y ) T=<T, (

% :{ 2o 2,2 s

! TaUD(Su) + (T - Ta) GD(:b) + 2Ta(T - Ta)O’D(Su)O’D(X,,)67 Isa=ss T> Ta

For the FORM approach, the limit state function can be expressed as
_ v —-TD(s,) T<T,
g() N { 1// - TaD(Sa) - (T - Ta)D(sb) T> Ta (25)

The time-dependent fatigue reliability can be calculated following
the same procedure described for stationary loading. Equations (24)
and (25) show that the reliability variation has two patterns (i.e.,
before and after 7). A schematic plot of this phenomenon is shown
in Fig. 8.

F. Time-Dependent Fatigue Reliability and Probabilistic Life
Distribution

The proposed approximation methods are simple formulations for
time-dependent fatigue reliability analysis. Using these methods, the
reliability at time 7" can be calculated. Similarly, for a given reliability
level (or probability of failure), the corresponding fatigue life of the
material (i.e., time 7) can also be calculated. Thus, the current
formulation can also be used for probabilistic fatigue life prediction.
The probability of fatigue damage being larger than a critical damage
amount V¥ at time instant 7 is equal to the probability of fatigue life
being less than the time instant 7 when the fatigue damage is v. The
relationship of time-dependent failure probability and the
probabilistic fatigue life distribution is shown in Fig. 9 schemati-
cally. Mathematically, this relation is expressed as

P(Dr>V),_r =Pt <T)p,—y (26)

type, and specimen numbers at constant and variable loading tests.
Figure 10 provides schematic illustrations of the variable loading
type listed in Table 1.

The statistics of the experimental data under constant amplitude
loading are shown in Table 2, including mean value, standard
deviation, and distribution type of the single cycle fatigue damage at
different stress levels.

B. Validation of the Reliability Estimation

The final objective of time-dependent fatigue reliability is to
predict the reliability variation corresponding to time under different
variable loading. In this section, the predicted reliability variation is
compared with the empirical fatigue reliability variation from the
experimental data. Because of the large number of experimental data
collected in this study and the space limitations, we only show the
comparisons under several loading conditions for each material. The
comparisons are shown in Fig. 11 by plotting the predicted and
experimental variations together. The details of the plotted
experimental loading conditions are listed in Table 3.

It is observed that the prediction results agree with the
experimental results very well for different variable amplitude
loading, with a few exceptions. The prediction results shown in
Fig. 11 are obtained using the FORM approach. Although it is not
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shown here, the moments matching approach yields very similar time’ time
prediction results compared to the FORM approach. Because only a) TS (two-step loading) b) MS (multistep loading)

block and step loading data are used here, the computational time of
both the moments matching approach and the FORM approach are

almost identical. :
V. Conclusions failure IH “ ‘ " “‘ failure

Stress
Stress

Two efficient fatigue reliability calculation methods are proposed time time
in this study. They are based on a stochastic process representation of ) TB (two-block loading) d) MB (multiblock loading)
the material properties under constant amplitude loading and a Fig. 10 Illustration of the type of variable loading used in this study.

Table 1 Experimental description of collected materials

No. of specimens®?

Material name Reference Types of variable loading* Constant loading Variable loading
Nickel-silver [27] TS 200 50

16Mn steel [28] TS and MS 15 10
LY12CZ aluminum alloy [29] MB N/A 15-21
Carbon steel [28] TS 15-18 13-15

45 steel-1 [13] MB 10 9

45 steel-2 [30] MB 10 6

DD16 fiberglass composite laminates [31] TB 15-20 3-62

“The abbreviation and schematic illustration of the type of the variable loading is shown in Fig. 4.
"The number of specimens indicates the number under the same stress level (constant loading) or the same type of variable loading.
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Table 2 Statistics of constant amplitude S—N curve data

Statistics of single cycle fatigue damage (1/N)

Material Stress amplitude, MPa Mean Std. Distribution
478 2.44E — 06 5772E—07  Weibull
Nickel-silver 583 8.32E — 06 1.79E—-06  Weibull
666 1.89E — 05 3.16E—06 Weibull
394 9.21E — 06 2.14E—-06 Weibull
16Mn steel 373 5.16E — 06 6.48E — 07  Weibull
344 1.42E — 06 242E—-07 Weibull
125.44 4.37E — 05 1.0SE—05 Weibull
101.92 1.76E — 05 1.77E—-06  Weibull
LY12CZ 78.79 7.05E — 06 1.43E—06 Weibull
49.98 2.37E — 06 8.33E—07 Weibull
46.06 1.ISE—06  7.19E—07 Weibull
37.04 1.57E — 07 4.83E—08  Weibull
366 2.05E — 05 746E — 06  Weibull
Carbon steel 331 7.27E — 06 243E—-06 Weibull
309 1.72E—06  7.33E—07 Weibull
525 5.88E — 06 3.94E - 06 Lognormal
500 4.18E — 06 3.09E—06 Lognormal
45 steel-1 475 308E—06 1.8E—06 Lognormal
450 1.99E — 06 1.44E —06  Lognormal
400 8.23E — 07 4.86E — 07 Lognormal
750 3.38E — 05 1.03E—05 Lognormal
650 1.05E — 05 3.85E—06 Lognormal
45 steel-2 630 954E—06 251E—06 Lognormal
590 5.82E — 06 1.21IE—06 Lognormal
520 2.55E - 06 1.38E—06 Lognormal
206 5.48E — 06 7.17E—-06  Lognormal
. X 241 1.97E — 05 1.97E—-05 Lognormal
DD16 fiberglass composite laminates 328 0.000615 0.000362 Lognormal
414 0.004569 0.003278  Lognormal

nonlinear damage accumulation rule. In the moments matching
approach, the fatigue damage under variable amplitude loading is
assumed to follow either lognormal or Weibull distribution, whereas
the first two central moments are determined analytically without
approximation. This results in a simple analytical solution for either
the probability distribution of the service time to failure (fatigue life)
or the probability distribution of the amount of damage at any service
time. In the FORM approach, no assumption is made for the damage
distribution under variable amplitude loading and the statistics of the
basic variables is used together with the first-order reliability method.

The proposed methods are very efficient in calculating the time-
dependent reliability variation under cyclic fatigue loading com-
pared to the simulation-based approaches. Thus, the proposed
methods are appropriate for application for preliminary analysis at

the design stage. The other advantage of the proposed method is that
they include the correlation effect of the damage accumulation under
variable amplitude loading, which has been mostly ignored in the
existing models. Currently available models in the literature are
shown to be two special cases of the proposed approach, that is,
independent random variables and fully correlated random variables.
The proposed methodology has been validated using experimental
data under deterministic variable amplitude loading. Further
validation and modification are required to consider other types of
uncertainties associated with external loading, such as uncertainty
due to insufficient data, modeling uncertainty, etc. Application of the
proposed methods to structural systems and inclusion of
uncertainties in structural geometry and operational conditions also
needs further study.

Table 3 Experiments description shown in Fig. 11

Material Loading no. Variable loading?
1 TS: 666 (5.54 x 10*) — 478 (X)
Nickel—silver 2 TS: 666 (3.98 x 10*) — 478 (X)
3 TS: 478 (1.15 x 10°) — 666 (X)
4 TS: 478 (4.46 x 10°) — 666 (X)
1 TS: 394 (7.5 x 10*) — 373 (X)
16Mn steel 2 TS: 373 (1.46 x 10°) — 394 (X)
3 MS: 373 (10°) — 394 (10%) — 373 (10°) — 344 (10°) — 394 (10°) — 344 (10°) — 394 (X)
LY12CZ 1 MB: 93.1 (2.64 x 10*) — 69.58 (1.056 x 10*) — 46.06 (1.848 x 10*) — 23.52 (3.432 x 10%)
2 MB: 93.1 (6.6 x 10%) — 69.58 (3.3 x 10%) — 55.86 (6.6 x 10°) — 46.06 (1.584 x 10*) — 37.24 (3.96 x 10*)
1 TS: 331 (8.06 x 10%) — 366 (X)
Carbon steel 2 TS: 331 (1.21 x 10°) — 366 (X)
3 TS: 331 (8.06 x 10°) — 309 (X)
45 steel-1 1 MB: 240 (10°) — 350 (8 x 10*) — 400 (2.5 x 10*) — 500 (10*) — 400 (2.5 x 10*) — 350 (8 x 10*) — 240 (10°)
45 steel-2 2 MB: 500 (1.5 x 10*) — 590 (4 x 103) — 626.6 (5 x 10%) — 590 (4 x 10*) — 500 (1.5 x 10%)
DD16 3 TB: 328 (10) — 207 (10°)

“The number before the parentheses indicates the stress level and the number inside the parentheses is the applied number of cycles. For step loading (TS and MS), the applied

cycle number of the last stress level is not known a priori and thus an X is used.
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Fig. 11 Time-dependent reliability variation comparisons between prediction and experimental results.
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